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Metabolic heterogeneity and cross-feeding 
within isogenic yeast populations captured 
by DILAC
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Simran Kaur Aulakh2, Jürg Bähler    3, Vadim Demichev1,2, Michael Mülleder4  
& Markus Ralser    1,2,5,6 

Genetically identical cells are known to differ in many physiological 
parameters such as growth rate and drug tolerance. Metabolic 
specialization is believed to be a cause of such phenotypic heterogeneity, 
but detection of metabolically divergent subpopulations remains 
technically challenging. We developed a proteomics-based technology, 
termed differential isotope labelling by amino acids (DILAC), that can detect 
producer and consumer subpopulations of a particular amino acid within an 
isogenic cell population by monitoring peptides with multiple occurrences 
of the amino acid. We reveal that young, morphologically undifferentiated 
yeast colonies contain subpopulations of lysine producers and consumers 
that emerge due to nutrient gradients. Deconvoluting their proteomes using 
DILAC, we find evidence for in situ cross-feeding where rapidly growing cells 
ferment and provide the more slowly growing, respiring cells with ethanol. 
Finally, by combining DILAC with fluorescence-activated cell sorting, 
we show that the metabolic subpopulations diverge phenotypically, as 
exemplified by a different tolerance to the antifungal drug amphotericin B. 
Overall, DILAC captures previously unnoticed metabolic heterogeneity and 
provides experimental evidence for the role of metabolic specialization 
and cross-feeding interactions as a source of phenotypic heterogeneity in 
isogenic cell populations.

Recent advances in single-cell biology increasingly shed light on 
heterogeneity among isogenic cells. For instance, individual cells 
heterogeneously express metabolic enzymes and stress-response 
genes, possibly indicating metabolic specialization and bet-hedging 
strategies1–4. Heterogeneity does in fact appear to be pervasive and 
is emerging as a cellular modulator of phenotypes at the population 

level5–8. Moreover, heterogeneity at the single-cell level is associated 
with medically relevant antimicrobial tolerance and resistance phe-
notypes9,10. Despite these advances, we lack a comprehensive under-
standing of the biological sources of heterogeneity. While it may have 
stochastic components, heterogeneity is also a selected property that 
promotes drug tolerance and can be advantageous for survival in stress 
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The latter could have resulted from two different scenarios where 
either (1) cells behave homogeneously, with all obtaining some lysine 
by import and some by synthesis or (2) subpopulations emerge, with 
some cells synthesizing lysine and others consuming it (Fig. 1c). To dis-
tinguish between the two scenarios we exploited the incorporation of 
labelled lysine into proteins and devised a method relying on peptides 
containing exactly two lysine residues. In a homogeneous population, 
cells contain a mix of produced and imported lysine molecules and 
the number of labelled lysine residues in a peptide should follow bino-
mial distribution: in other words, in the case of a 1:1 ratio of synthesis 
and uptake, peptides with one out of two lysine residues labelled are 
expected to be twice as abundant as fully labelled or unlabelled pep-
tides. If there are distinct producer and consumer subpopulations, 
these mixed-labelling states should be depleted and peptides should 
be either fully labelled or unlabelled (Fig. 1c).

Young colonies contain producer and consumer 
subpopulations
To investigate whether yeast colonies contain lysine producer and con-
sumer subpopulations, we used SM agar medium with isotope-labelled 
glucose (13C) supplemented with four different lysine (12C) concentra-
tions ranging from 20 to 400 µM and grew colonies for 28, 48 and 68 h. 
Throughout this time course, growth of colonies took place (Fig. 2a). 
Proteins of whole colonies were then extracted and digested into pep-
tides using protease gluC and subjected to targeted LC–MS/MS analysis.

We determined the relative abundance of producer, consumer and 
mixed-labelling states of five abundant and reliably measured peptides 
with exactly two lysine residues each (Methods, Supplementary Dataset 
2 and Extended Data Fig. 2a). We illustrate these states averaged across 
the top three suitable fragments, the five peptides and two biological 
replicates (Fig. 2b), as well as example data obtained from the LC–MS/
MS experiment (Fig. 2c). With rising lysine concentration an increasing 
fraction of lysine residues was light (12C), which indicates cells obtaining 
lysine by import rather than synthesis (concordant with Fig. 1b). The 
ratio of consumer, producer and mixed peptides was approximately 
stable over the three timepoints. Strikingly, the mixed-labelling state, 
expected if cells synthesize part of their lysine and uptake another 
part, was rare compared with uniform-labelling states. This can be 
quantified by comparison with expected relative abundances under 
the homogenous model: for colonies supplemented with 200 µM lysine 
and harvested after 48 h, the overall fraction of imported (12C) residues 
across all labelling states was 62.5%. From this, one can compute an 
expected abundance of 46.9% for mixed-labelling states using a simple 
Bernoulli model (Methods). This is approximately three times higher 
than the observed abundance of 15.0%, indicating that a homogeneous 
model cannot account for these data (Fig. 2d); in other words, our data 
indicate that the individual cell either produces or consumes lysine and 
that mixed states are not abundant.

To rule out experimental artefacts we determined labelling states 
using three alternative approaches. First, similar labelling ratios 
were quantified from intact precursors without resolving the two 
mixed-labelling states (Extended Data Fig. 2b). Second, we quantified 
labelling states from tryptic digests using missed cleavage peptides, 
removing the need for the less common protein digestion with protease 
gluC (Extended Data Fig. 2c). Third, congruent results were obtained 
when peptides with three lysine residues were investigated (Extended 
Data Fig. 2e). We additionally conducted similar experiments with 
three other amino acids and observed producer/consumer subpopula-
tions for two of these (leucine and phenylalanine, but not asparagine; 
Extended Data Fig. 3). Hence, our data paint a cohesive picture where 
subpopulations of cells within colonies either consume or produce 
lysine, leucine or phenylalanine.

We noted a relatively high variation in the labelling data (expressed 
as error bars in Fig. 2b) and set out to determine its source. Plotting 
peptides and replicates individually for the 200 µM supplementation 

situations11–15 because yeast cells isolated from more challenging envi-
ronments show a higher degree of heterogeneity than those isolated 
from more constant environments16,17.

An important metabolic property that can cause single-cell hetero-
geneity is the metabolic specialization of cells caused by exchange of 
metabolites. Both prokaryotic and eukaryotic cells export a wide range 
of metabolites and can dynamically switch between self-synthesis and 
uptake of metabolites which, in turn, triggers wide-ranging physiologi-
cal changes, alters gene expression on a genome-wide scale and affects 
stress and drug tolerance7,18–24. Work with synthetic yeast communities 
has revealed the substantial potential of cells to engage in metabolite 
exchange interactions specifically involving amino acids25,26. However, 
metabolic heterogeneity and metabolite exchange within isogenic sub-
populations remain elusive and their investigation remains challenging 
in wild-type cells27. By exploiting differential incorporation of stable 
isotope-labelled amino acids into protein, we were able to uncover 
extensive metabolic and phenotypic heterogeneity in undifferentiated, 
wild-type yeast colonies. The potential for the formation of diffusion 
gradients in media and within colonies makes these promising models 
with which to study heterogeneity. We find evidence for heterogene-
ous amino acid utilization and ethanol cross-feeding, and show that 
this differentially affects proteome, physiology and drug tolerance.

Results
A proteomics method for detection of metabolic 
subpopulations
To investigate the heterogeneous amino acid biosynthetic metabolism 
we relied on the well-characterized metabolism of Saccharomyces cer-
evisiae, focusing on lysine. Specifically we exploited the situation that, 
despite being a lysine prototroph, S. cerevisiae takes up this amino acid 
and incorporates it into proteins when present in medium28,29. Indeed, 
lysine accumulates to higher levels intracellularly in consumers than in 
producers, with important consequences for stress resistance (‘lysine 
harvesting’18). Moreover, in S. cerevisiae laboratory strains lysine is not 
metabolized as a nitrogen/carbon source30, which enables the use of 
heavy isotopes without label leakage into wider carbon metabolism.

We started by characterizing the synthesis-to-uptake switch 
in response to externally available lysine. We found that in liquid 
medium, supplemented lysine was rapidly consumed by all cells 
until exhausted, at which point cells turned from being consumers 
to producers (Extended Data Fig. 1). Subsequently, we focused on 
yeast colonies as a model for naturally spatially structured growth. 
Yeast colonies were grown on synthetic minimal (SM) medium with 
1% glucose as the sole carbon source and ammonium as nitrogen 
source, as well as different lysine concentrations (Fig. 1a). To distin-
guish lysine molecules obtained by endogenous synthesis versus 
uptake, we employed a 13C-labelling strategy where cells were fed 
fully labelled 13C glucose and 12C lysine. We chose to use labelled glu-
cose rather than labelled lysine for economic reasons, and because 
it allows easy application of the workflow to any amino acid. Lysine 
producer cells synthesize lysine from glucose and will hence contain 
lysine with heavy carbons (13C), while lysine consumer cells take up 
lysine directly from the medium and contain light (12C) lysine. Whole 
colonies were collected, free intracellular amino acids extracted and 
the population-wide ratio of labelled:unlabelled lysine was determined 
using liquid chromatography tandem mass spectrometry (LC–MS/
MS)31. With increasing supplement concentrations, a larger fraction 
of the intracellular lysine is obtained by import rather than synthesis 
(Supplementary Dataset 1 and Fig. 1b; see Extended Data Table 1 for 
an overview of datasets generated in this study). Supplement concen-
trations in the micromolar range were sufficient to largely suppress 
synthesis and result in cells obtaining lysine essentially only by import, 
while a lysine concentration of approximately 100 µM resulted in half 
of the intracellular lysine in the population being obtained by import 
and the other by self-synthesis.
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concentration, we noted that the replicates agree very closely and 
that the variation noted emerges at the peptide level (Fig. 2e). Since 
most of these peptides belong to metabolic enzymes (Extended Data  
Fig. 2a), this raised the interesting hypothesis that these proteins 
might be expressed to different levels in producers and consumer cells, 
and that proteomic technology could characterize the differentially 
labelled proteomes of these subpopulations.

Proteome-wide labelling reveals subpopulation gene 
expression
Differential labelling of the proteomes of lysine consumers and pro-
ducers opened the possibility of deconvoluting their distinct pro-
teomes from bulk measurements without the need to separate cells. 

We therefore expanded our analytical approach to capture thousands 
of peptides using parallel accumulation–serial fragmentation com-
bined with data-independent acquisition (DIA–PASEF), followed by 
data-independent–neural network (DIA–NN) analysis32–35 (Fig. 1c). We 
grew colonies on agar with 13C glucose and 200 µM lysine and acquired 
deep proteome profiles for six colonies grown for 48 h. In total, we 
detected approximately 35,000 precursors per sample at 1% false dis-
covery rate, containing 3,600–4,600 high-quality, proteotypic light/
heavy pairs containing exactly one lysine residue (Supplementary 
Dataset 3, Methods and Extended Data Fig. 4a). The median ratio of 
producer- to consumer-attributable peptides ranged between 0.63 and 
0.66 across the six samples (Extended Data Fig. 4b). This is consistent 
with the observation that consumers are slightly more abundant at 

SM agar medium
70 mM ammonium

1% 13C glucose 

13C lysine
12C lysine

Lysine supplement (12C)

a
Free intracellular amino acid measurementPrototrophic S. cerevisiae

12C (imported)

Ly
si

ne

HILIC–MS/MS with
selective reaction
monitoring

13C glucose

2Oxoglutarate 2Oxoadipate 2Aminoadipate 13C Llysine

Lglutamate 2Oxoglutarate

Ammonium
12C Llysine

12C Llysine Protein 
synthesis

Competing underlying models Expected peptide labelling patterns

Homogeneous mix of synthesis and uptake

Heterogeneous producer/consumer populations

0 0.25 0.50

Relative abundance

0 0.25 0.50

Relative abundance

Equal intracellular concentrations, unequal intracellular concentrations

Experimental approach

b

c

Extract proteins

Trypsin digestgluC digest

Targeted PRM 
measurement DIA acquisition

Producer

Consumer
Mixed states

Precise quantification 
of labelling states

Producer/consumer
proteomes

E

E
E

E

0 0.1 0.2 0.3 0.4 0.5 0.6

Supplemented lysine (mM)

0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

ab
un

da
nc

e 
of

 im
po

rt
ed

 ly
si

ne
 (12

C
)

13C (produced)

Fig. 1 | A strategy for the detection and analysis of metabolic subpopulations 
based on stable isotope incorporation and proteomics. a, Overview of model 
system. Yeast populations are grown on minimal media containing glucose and 
ammonium, with additional amino acid supplements (lysine in our example). 
Prototrophic yeast grown on these media therefore have two alternative routes 
of obtaining amino acids: (1) synthesis from glucose and ammonium using their 
own biosynthetic pathway (in the case of lysine, via the α-aminoadipate pathway) 
or (2) direct import of extracellular amino acids. The use of 13C-labelled glucose 
allows differentiation between amino acids obtained from these two routes 
via LC–MS/MS analysis of free intracellular amino acids. b, With increasing 
supplement concentration (x axis), yeast colonies progressively use amino acid 
import rather than synthesis (n = 3 biological replicates; a cumulative gamma 
distribution was fitted to data for visualization). c, Peptides carry signatures 
of metabolic subpopulations. Measurement of the population-averaged 
labelling state of free amino acids cannot determine the metabolic mode 
adopted by putative subpopulations. A population-level fraction of imported 

lysine of 0.5 (achieved with approximately 100 µM lysine supplementation 
(b)) could be explained by either (1) each cell importing half of its required 
lysine and synthesizing the other half or (2) distinct producer and consumer 
subpopulations (left). However, these two different underlying mechanisms 
can be distinguished at the peptide level when peptides with two or more lysine 
residues are considered. In the case of distinct producer/consumer populations, 
one would not expect to observe peptides with a mix of labelled and unlabelled 
lysine residues (middle). Here we employed two complementary experimental 
approaches to characterize lysine producer/consumer subpopulations: Protein 
extracts of yeast populations were digested with protease gluC, which selectively 
cuts after glutamate residues yielding a peptide mix, some of which contained 
two lysine residues that were then analysed with a targeted LC–MS/MS assay. 
Complementarily, protein extracts were digested with trypsin, which selectively 
cuts after lysine and arginine residues, resulting in a large number of peptides 
with a lysine residue at the C terminus that were then analysed using a data-
independent acquisition scheme (DIA–PASEF35) and the software DIA–NN32.
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this supplement concentration in colonies (Fig. 2). The quality of the 
data was confirmed by the correlation of the labelling state of pep-
tides derived from the same protein, and of the same precursor at +2 
and +3 charge states (Extended Data Fig. 4c,d), as well as by a spike-in 
experiment (Extended Data Fig. 4e–g). Out of 4,327 heavy/light pre-
cursor pairs identified in at least three replicates, 3,044 had labelling 

ratios significantly different from the median producer/consumer ratio 
(Extended Data Fig. 5a; false-discovery-rate-corrected, one-sample, 
two-sided t-test). A protein was considered differentially expressed 
between producers and consumers if (1) at least one of its precursors 
was significant in the previous analysis, (2) all precursors showed the 
same trend and (3) the average absolute log2-transformed fold change 
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Fig. 2 | Yeast colonies contain stable lysine producer and consumer 
subpopulations. a, Proteomes of yeast colonies supplemented with four 
different lysine concentrations were collected at three different time points 
(n = 2 biological replicates). Colony population size increased throughout the 
experiment (measured by OD, with approximate conversion to cell numbers). 
Uncropped images are shown in Extended Data Fig. 2d. b, Labelling states of 
five peptides, each containing two lysine residues, were determined by targeted 
LC–MS/MS measurements. Shown is the relative abundance of producer, 
consumer and mixed peptides over time and with varying lysine supplement 
concentration. Ratios are largely stable over the three time points and depend 
primarily on lysine supplement concentration in the medium. Bar heights show 
the mean across the top three fragments and across five measured peptides 
and two biological replicates; error bars indicate s.d. c, Chromatograms 
(representative examples) illustrating how peptide ratios were determined 
analytically. Left, chromatograms (ion intensity over time) for +2 charged 
precursors with modification-stripped sequence KYSLAPVAKE (single letter 
amino acid code). Producer, consumer and mixed peptides are distinguishable 

by their mass:charge ratio. To confidently identify peptides and resolve the two 
mixed-labelling states, precursors were fragmented in the mass spectrometer. 
Right, fragment chromatograms for the consumer peptide. The top three most 
abundant fragments from those containing exactly one lysine were used for 
quantification (marked with an asterisk). d, Mixed-labelling-state peptides are 
substantially under-represented, indicating the existence of distinct producer 
and consumer subpopulations. The ‘expected’ distribution of labelling states, 
under the assumption of metabolic homogeneity, was calculated as a binomial 
distribution with a probability value taken from the overall fraction of labelled 
lysine sites. The 48 h timepoint of colonies supplemented with 200 µM lysine is 
shown as an example. e, Variation between measured peptides is greater than 
that between biological replicates. Shown are cumulative relative abundance 
fractions of the three labelling states for each replicate and peptide. From left to 
right, peptides show increasing fractions of consumers, which may indicate that 
the proteins from which these peptides originate are differentially expressed in 
producers and consumers.
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(FC) across precursors was >0.75 (Extended Data Fig. 5b). Due to this 
stringent filtering we obtained summary statistics for 1,546 proteins, 
of which 277 were significantly differently expressed between produc-
ers and consumers. There was no obvious relationship between the 
number of peptides measured per protein and the likelihood of the 
protein being a hit, indicating that less reliably measured proteins 
with few measured peptides are not over-represented in the results 
(Extended Data Fig. 5c).

We first tested whether these differences in gene expression could 
be directly attributed to the lysine production/consumption status 
of cells. For this we generated an independent dataset comparing 
whole-colony, unlabelled proteomes of colonies supplemented with 
and without 400 µM lysine (a concentration at which almost all cells are 
consumers) (Supplementary Dataset 4). Following comparison of this 
profile with the producer/consumer profile obtained by 13C labelling 
(Supplementary Dataset 4 versus 3), enzymes involved in lysine biosyn-
thesis were found to be strongly upregulated in lysine producers in both 
datasets (Fig. 3a). This was expected because the lysine biosynthesis 
pathway is under transcriptional control of the transcription factor 
Lys14p36. However, beyond this no correlation was observed (global 
correlation r = −0.05, Pearson correlation). This result indicated that 
a broader range of factors beyond lysine consumer/producer state 
affect the proteome of cells growing within the colony.

Isogenic, young colonies contain fermenting and respiring 
cells
The set of proteins differentially abundant in producer and consumer 
cells within the colony were enriched for genes annotated to central 
carbon and energy metabolism (Extended Data Fig. 5d). We specu-
lated that other nutrient gradients could form within the colonies, 
driving this differentiation. If this were the case we would expect the 
consumers to be mainly located towards the bottom of the colony, 
close to the nutrient source where nutrient concentrations are prob-
ably highest. To directly test for this possibility, we independently 
obtained proteomes for cells in the top and bottom parts of seven colo-
nies grown on standard (unlabelled and non-supplemented) media. A 
reproducible separation of cells was achieved using a custom-made 
plastic guide and a cell scraper (Methods and Fig. 3b). Proteins were 
extracted, tryptic peptides generated and proteomes measured sepa-
rately for each layer of the colony (Supplementary Dataset 5). The 
differential expression profile of top and bottom cells correlated with 
that obtained previously for producer/consumer cells by 13C labelling 
(r = 0.48, Pearson correlation; Supplementary Dataset 5 versus 3, and 
Fig. 3b). This result confirmed that lysine producers are located pre-
dominantly in the top region of colonies and that, even in the absence 
of lysine supplementation, substantial proteomic heterogeneity exists 
within young colonies.

We next focused on functional differences in the proteomes 
of the subpopulations. Mapping of quantitative gene expression 
changes obtained by differential isotope labelling by amino acids 
(DILAC; Supplementary Dataset 3) on the metabolic network (Fig. 3c) 
revealed substantial and concordant abundance changes in enzymes 
participating in central carbon and energy metabolism. Notably, the 
tricarboxylic acid (TCA) cycle, oxidative phosphorylation and parts of 
the pentose phosphate pathway were upregulated while cytoplasmic 
translation was downregulated in lysine producer cells located in the 
upper layer (Fig. 3d). Lysine-consuming cells in the bottom layer, 
on the other hand, had a proteomic signature of rapidly growing, 
fermenting yeast. We and others have previously observed similar 
gene expression signatures in batch cultures where cells rely either 
on respiration or fermentation for growth and energy production37–39. 
Furthermore, there could be a direct influence of lysine, the lack of 
which requires increased proteome allocation to lysine synthesis at 
the expense of proteins involved in translation40. Overall, these results 
indicated that metabolic states that occur sequentially (temporally 
separated) in batch culture co-occur within colonies in a spatially 
separated manner.

We therefore compared producer/consumer proteome pro-
files (obtained from actively growing colonies) with the proteomic 
changes observed between early exponential and postdiauxic growth 
(postfermentative growth on a non-preferred carbon source such 
as ethanol) in liquid batch culture (published dataset by Murphy 
et al.38). The global correlation of the two datasets was high (r = 0.68, 
Pearson correlation; Fig. 3e and Extended Data Fig. 6), with several 
of the key metabolic changes that differentiate exponential with 
postdiauxic shift cells represented in the lysine consumer versus 
producer profiles. For instance, in the pathway converting ethanol 
to acetyl coenzyme A (acetyl-CoA), elevated enzyme levels were 
detected for all three reactions (Fig. 3f ): alcohol dehydrogenase 
Adh2p (Supplementary Dataset 3: not measured; Supplementary 
Dataset 5: FC = 2.14, Padj = 0.0003); the acetaldehyde dehydrogenase 
Ald2p (Supplementary Dataset 3: FC = 2.48, two of two peptides were 
significant; Supplementary Dataset 5: FC = 1.37, Padj = 0.002); as well 
as the acetyl-CoA synthetase Acs1p (Supplementary Dataset 3: not 
measured; Supplementary Dataset 5: FC = 2.08, Padj = 0.0005), but 
not its isoform Acs2p. This is consistent with the shift from fermen-
tation to oxidative metabolism, because Acs1p is known to be the 
glucose-responsive isoform while Acs2p is thought to be regulated 
in response to lipid metabolism41. Growth on two-carbon compounds 
(such as ethanol or acetate) requires that acetyl-CoA is further metab-
olized by the glyoxylate cycle42 which, contrary to the TCA cycle, 
does not include decarboxylation reactions and therefore allows 
the net generation of four-carbon from two-carbon compounds. The 
glyoxylate cycle is repressed in the presence of glucose43. We note a 

Fig. 3 | Differential proteome analysis of lysine producers and consumers 
reveals extensive diauxie-like heterogeneity in young colonies. a, The lysine 
biosynthesis pathway is upregulated in producer cells, but their overall proteome 
profile is not explained by lysine producer/consumer status. The y axis shows 
protein abundance ratios in producer versus consumer cells within colonies 
supplemented with 200 µM lysine, determined from the ratio of lysine heavy 
versus light peptides by DILAC (Supplementary Dataset 3 (DS3); n = 6 biological 
replicates). The x axis shows abundance ratios from a separate experiment 
comparing colonies grown on unlabelled medium with and without 400 µM 
lysine supplement (Supplementary Dataset 4 (DS4); n = 5 biological replicates). 
While the lysine biosynthesis pathway is concordantly affected, the overall 
correlation is low, indicating that lysine availability alone is not the main driver 
of producer/consumer proteome differences. b, Producer/consumer proteome 
profiles correlate with proteomes from top and bottom layers of colonies. 
In an independent experiment (x axis, Supplementary Dataset 5 (DS5); n = 7 
biological replicates), colonies were grown on unlabelled and non-supplemented 
medium; the top layer of cells was then removed using a cell scraper and both 

top and bottom layers analysed separately. c, Differences in producer/consumer 
proteomes (Supplementary Dataset 3) mapped to metabolic pathways using 
iPATH80 indicate strong and concordant changes in expression of key metabolic 
pathways. The colour of edges indicates the direction (red, up; blue, down) 
and edge width reflects the magnitude of change. d, Changes in expression 
of proteins of key metabolic pathways between producers and consumers 
(Supplementary Dataset 3). Following convention, box-plot elements are 
defined as follows: centre line, median; box limits, upper and lower quartiles; 
whiskers, 1.5× interquartile range; points, outliers. e, Producer/consumer protein 
ratio profiles (Supplementary Dataset 3, y axis) correlate with changes in gene 
expression associated with the diauxic shift observed in liquid cultures38.  
a,b,e, Pearson correlation coefficient is shown. f, Pathway map illustrating 
changes in expression of the ethanol degradation pathway and glyoxlyate cycle 
in three datasets (left to right): producer/consumer protein ratios obtained with 
DILAC (Supplementary Dataset 3), top and bottom layer in non-supplemented, 
unlabelled medium (Supplementary Dataset 5) and proteome changes from 
postdiauxic versus early exponential growth38.
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strong upregulation of glyoxylate cycle genes in both lysine producer 
cells (Supplementary Dataset 3) and top-layer cells (Supplementary 
Dataset 5 and Fig. 3f).

Thus, both on their own and in comparison with publicly  
available data, our results paint a consistent picture: even within 
young, morphologically undifferentiated colonies there is meta-
bolic compartmentalization. Cells close to the agar surface have 
preferential access to nutrients, including glucose and amino acids, 
and grow by fermentation while cells in the upper layer respire and 

are required to produce lysine. Metabolic processes that have long 
been described as occurring in a temporally separated manner in 
liquid batch cultures appear to happen simultaneously but spatially 
separated within the colony. This is further supported by the recent 
discovery of ethanol as a shared resource in S. cerevisiae cultures44, 
and is analogous to acetate cross-feeding in Escherichia coli colo-
nies45–47. Of note, this metabolic specialization is established long 
before the emergence of morphological differentiation of ageing 
yeast colonies48.
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Ion and vitamin gradients add to physiological diversity
The overall proteome profiles between lysine producers/consumers 
and exponential phase/postdiauxic cells were correlated. However, 
we observed other striking differences in colony metabolism not 
reflected in batch culture experiments and not explained by lysine 
availability (Supplementary Note 1). Out of seven proteins strongly 
differentially expressed within colonies (Supplementary Dataset 3;  
abs(log2(FC)) > 1.5) but not between pre- and postdiauxic cells 
(abs(log2(FC)) < 0.5 (ref. 38); Fig. 3f), three stood out because they 
showed concordant changes in Supplementary Dataset 5 (physically 
separated top/bottom cell layers). Most notably, Adh4p, a minor alco-
hol dehydrogenase isozyme, is upregulated in lysine producer cells 
(Supplementary Dataset 3; FC = 14.6, four of four peptides significant). 
Adh4p is known to be induced by zinc starvation49, which could indicate 
that top cells are zinc starved. Bio2p, a key biotin biosynthetic enzyme, 

was also strongly upregulated in producer cells (Supplementary Data-
set 3; FC = 4.3, one of one peptide significant), which could indicate that 
top cells have reduced access to biotin as compared with bottom cells. 
Furthermore, upregulation of the chaperone Ssa4p (Supplementary 
Dataset 3; FC = 4.2, five of five peptides significant) suggests that top 
cells face stresses that are different from postdiauxic cells in liquid 
cultures. Further experiments will be required to confirm the pres-
ence, and explore the consequence, of additional nutrient gradients 
in colonies.

Intracolony heterogeneity alters resistance to amphotericin B
We next wondered whether metabolic heterogeneity within colonies 
could affect cellular phenotypes (Fig. 4a). A homogenized (resus-
pended) heterogeneous population (obtained from a colony grown on 
medium with 13C glucose and 200 µM lysine supplement) was subjected 
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Fig. 4 | FACS and proteomics link producer/consumer status to an 
antimicrobial resistance phenotype. a, Experimental scheme used to test for 
phenotypic differences between producer and consumer subpopulations. A 
13C-labelled, heterogeneous population of cells from a colony is resuspended and 
challenged with the fungicidal drug amphotericin B. Live and dead populations 
are then separated physically using FACS and their producer/consumer status 
determined using targeted proteomics as before. This method can directly link a 
metabolic phenotype to one with a fluorescent readout. b, Lysine producer cells 
of colonies were found to be significantly more likely to survive amphotericin B 
treatment (mean fraction of producer cells in live population 26.6% versus 12.1% 
in the dead population; P = 0.0004, paired two-sided t-test, n = 4 biological 
replicates (biol. rep.)). Error bars indicate s.d. Lines indicate peptide pairs 
across colour-coded biological replicates. Following convention, box-plot 

elements are defined as follows: centre line, median; box limits, upper and lower 
quartiles; whiskers, 1.5× interquartile range; points, outliers. c, This difference 
in susceptibility is not due to lysine production alone. No clear difference in 
susceptibility was observed when whole colonies, which were either producers 
(no supplement) or consumers (400 µM lysine), were challenged with varying 
concentrations of amphotericin B. d, Difference in susceptibility is linked to 
the position of cells in the colony. Physically separated top and bottom cells 
from non-supplemented colonies were challenged with various concentrations 
of amphotericin B. Bottom-layer cells were significantly more susceptible (at 
5 µg ml–1: mean fraction of dead cells in bottom layer 32% versus 22% in the top 
layer; P = 0.0005, paired two-sided t-test (see inset)). c,d, Lines and shaded areas 
represent mean and s.d., respectively. **P < 0.005, ***P < 0.0005.
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to amphotericin B for one h and stained with the membrane permeabil-
ity dye propidium iodine, which marks dead cells that have lost mem-
brane integrity (Extended Data Fig. 7a). We then separated live and dead 
cells using fluorescence-activated cell sorting (FACS) and determined 
labelling states of both groups separately. Cells that did not survive drug 
treatment were significantly less likely to be producer cells (P = 0.0004, 
paired two-sided Student’s t-test; Fig. 4b and Extended Data Fig. 7b). We 
then investigated whether this was a direct consequence of lysine con-
sumption, but found no apparent difference in susceptibility between 
colonies grown either in non-supplemented medium or in medium 
supplemented with 400 µM lysine (Fig. 4c and Extended Data Fig. 8). 
Rather, the difference in susceptibility is explained by the position of 
cells within the colony (Fig. 4d and Extended Data Fig. 9; physically 
separated top and bottom layers from non-supplemented colonies). 
These results demonstrate the ability of DILAC to link metabolic and 
resistance phenotypes at the subpopulation level, and add evidence 
linking metabolic state and drug resistance in isogenic populations.

Discussion
Detection of metabolic heterogeneity and metabolic interactions 
within communities remains challenging. Even within multispecies 
communities, genomic information (for example, the presence or 
absence of a particular biosynthetic pathway) is not sufficient for 
obtaining a comprehensive picture of metabolic exchange interac-
tions because auxotrophs and prototrophs alike import extracellular 
metabolites. As a consequence, we have only sparse evidence regarding 
the underlying mechanisms and physiological consequences of meta-
bolic heterogeneity. Here we have developed DILAC, a method for the 
characterization of metabolic subpopulations. DILAC captures differ-
ences in amino acid consumption and production by quantifying the 
differential incorporation of stable isotope-labelled amino acids into 
peptides with multiple occurrences of the same amino acid. DILAC can 
hence discriminate, from proteomics data measured in bulk, whether a 
(sub)population of cells produced, consumed—or both consumed and 
produced—a particular amino acid. Indeed DILAC is complementary 
to previous approaches that combined 13C labelling and proteomics 
for metabolic flux analysis50 and investigations of substrate prefer-
ences51–56, via its unique ability to directly detect heterogeneous amino 
acid metabolism across isogenic and morphologically homogeneous 
populations of wild-type cells. Moreover, based on differential label-
ling patterns, DILAC can deconvolute the proteomes of producer and 
consumer cells out of bulk measurements and, hence, determine which 
proteins are differentially expressed between subpopulations without 
separating them physically.

The DILAC workflow is in principle broadly applicable but comes 
with certain technical and biological limitations. The detection of het-
erogeneity by targeted analysis of the depletion of the mixed-labelling 
state is qualitative in this study and might be probelematic in cases 
where subpopulations are not as distinct—that is, separated by gradual 
transitions. Furthermore, DILAC is not precise in the quantification of 
the number of cells in each subpopulation because these can have dif-
ferent protein synthesis rates and must therefore be complemented 
by other methods (for example, single-cell metabolomics57 and pro-
teomics) if precise ratios between cell types are to be determined. 
Moreover, although application of DILAC to other amino acids has been 
demonstrated here, the depth and precision of proteome-wide profile 
deconvolution vary depending on the prevalence of suitable peptides 
and fragments. Furthermore, for technical reasons, the characteriza-
tion of rare subpopulations will remain more challenging compared 
with high-abundance subpopulations because quantitative precision 
and the number of identified peptide pairs diminish for heavily skewed 
heavy/light ratios.

A high degree of metabolic diversity was revealed by DILAC within 
young, undifferentiated yeast colonies. It has long been known that 
growth of microbial colonies is limited by diffusion of metabolic 

substrates58,59, and this could mean that only a subpopulation of cells 
proliferates60,61. Our data conclusively describe subpopulations, stable 
in relative size, that produce and consume lysine and whose proteomes 
simultaneously carried a strong signature of fermentative growth on 
glucose and respiratory growth on ethanol. Colonies, arguably repli-
cating aspects of spatial structure and chemical gradients naturally 
encountered by yeasts in the absence of artificial homogenization by 
rapid shaking, are more complex and metabolically heterogeneous 
than previously thought. This adds to related studies in bacteria, in 
which recent work has described the cross-feeding of alanine62 and 
acetate45–47. We also conducted experiments in liquid batch culture, 
and here our results help to explain why experimental results can dif-
fer markedly between different points in growth phases. We find that 
cells switch from a consumer to a producer state at low supplement 
concentration and, because different amino acid supplements in batch 
culture are consumed rapidly but at different rates63, different points 
in batch culture growth experiments will be composed of different 
consumer and producer populations. Furthermore, our results are rel-
evant for microbiological experiments using colonies. These typically 
study young colonies grown for a small number of days and in which no 
morphological differentiation is typically visible. Our results indicate 
that several compounds form gradients, resulting in a metabolically 
heterogeneous population. Colonies are thus complex environments 
with numerous gradients creating micro-environments and metabolic 
heterogeneity, resulting in important physiological consequences for 
each subpopulation and for the colony as a collective64,65.

Our study adds a type of heterogeneity to a growing body of work 
describing metabolic heterogeneity in yeast colonies and biofilms66. 
Importantly, the heterogeneity we detected within young colonies 
is different compared with that observed in ageing yeast colonies on 
rich media, where complex metabolic changes resulted in the differ-
entiation into upper- and lower-layer cells with vastly different physi-
ologies65,67,68. Whereas in ageing colonies fermentative metabolism 
and growth take place in outer cells while inner cells appear stressed 
and starved, we observed the opposite in young, growing colonies 
where the fermentative population is the one close to the agar. More 
recently, another line of evidence has described a type of heterogene-
ity in glucose-limited yeast colonies where cells differentiate into dark 
and light types after several days in glucose-poor but amino acid-rich 
media69. Here, one population produces trehalose from aspartate which 
is then used by a second, glycolytic population of cells70. Here again, the 
key difference is that prolonged starvation was used to induce marked 
morphological and metabolic differentiation.

An intriguing question to explore in future studies is the nature 
of the interaction between pre- and postdiauxic populations and its 
impact on the fitness of the whole community. Cells can transition 
between populations (due to the higher growth rate of the bottom 
population, there has to be a net flux of cells into the top population 
over time because both populations remain relatively equal in size). 
Simultaneous utilization of glucose and ethanol could affect the overall 
fitness of the colony by minimizing the amount of ethanol diffusing 
back into the medium—this could be beneficial or detrimental in the 
light of competition for carbon or the antimicrobial effect of ethanol 
on competitors. Higher ethanol concentrations in the top layers might 
also decrease the risk of invading bacterial species, allowing those cells 
close to the nutrient source to exploit it efficiently.

Finally, we found that metabolic differences between subpopula-
tions can affect cellular responses, as demonstrated for the clinically 
applied antifungal amphotericin B. In a recent study24 we showed that 
colonies containing cells with varying degrees of metabolic interac-
tions have increased drug tolerance. While this previous work shows 
that metabolic heterogeneity is a source of antifungal tolerance in a fun-
gal system where metabolic heterogeneity is genetically driven, we now 
show that heterogeneity in prototrophic wild-type colonies can also 
induce a differential response to antifungal drugs at the subpopulation 
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level. This finding could be of critical importance in regard to yeast 
pathogens such as Candida albicans that trigger drug-tolerant infec-
tions by the formation of biofilms. In spatially structured communi-
ties it can be hard to disentangle the effect of physical shielding from 
metabolic heterogeneity but, like others71, we have found that het-
erogeneous resistance is maintained even when the spatial structure 
is disrupted. On the other hand, even spatially homogeneous (but 
stationary—that is, starved) liquid cultures can display some degree 
of heterogeneous resistance72. Hence, understanding the influence 
of metabolic heterogeneity on phenotypic diversity in these systems 
could have broad implications for future treatment development.

Methods
Yeast strains and media
A prototrophic derivative of the S288C-descendent standard labora-
tory strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) was used 
throughout this study (described in (ref. 24)). It was obtained by repair-
ing the four auxotrophies via integration of the missing genes into their 
native genomic loci. Cells were revived from cryostocks by plating out 
on yeast extract peptone dextrose agar (1% yeast extract, 2% peptone, 
2% glucose and 2% agar) and incubated for 1–3 days. SM medium was 
prepared from yeast nitrogen base without amino acids (as 2× stock, 
stored in the dark; Sigma-Aldrich, no. Y0626) and 13C-labelled glucose 
(prepared as 10% stock; Sigma-Aldrich, no. 389374), to which l-lysine 
(prepared as 20 mM stock; Sigma-Aldrich, no. L5501) was added as 
required. Media components were sterilized by filtration. Where appli-
cable, autoclaved agar was included in media at a final concentration  
of 2%. In SM medium, a glucose concentration of 1% was used through-
out this study. Cultures and colonies were incubated at 30 °C. For 
experiments where cells were grown in/on 13C glucose medium, pre-
cultures/colonies were grown on SM medium containing 13C glucose 
without additional supplements to minimize carryover of 12C material.

Physical separation of top and bottom cells in colonies
Hot agar medium was filled into 12-well tissue culture plates. Before 
it solidified, a small square of plastic (cut from a tip box lid) with a cir-
cular hole in the middle (made using a regular office hole punch) was 
dropped onto the agar surface. Colonies were then inoculated using 
a pipette tip and grown for three days. To harvest top cells, a plastic 
cell scraper was swiped over the plastic surface, applying even and 
gentle pressure. Cells were washed off the scraper and the remaining 
bottom layer of the colony was washed off the agar surface with water. 
The optical density (OD) of both suspensions was measured, followed 
by centrifugation (14,000g, 4 min) and removal of the supernatant. 
Proteomic samples were then prepared as described below.

Measurement of free intracellular amino acids
Intracellular amino acids were extracted and measured as previously 
described31,73. In brief, 180 µl of 80% ethanol in water was added to 
previously frozen cell pellets. The sample was then incubated in a water 
bath at 80 °C for two min, followed by vigorous mixing for two min and 
a further two min at 80 °C. The extract was cleared by centrifugation 
(3,200g, five min) and used directly for LC–MS/MS analysis (Agilent 
1290 Infinity HPLC, Agilent 6470 triple quadrupole mass spectrom-
eter). Five microlitres of sample was separated by hydrophilic inter-
action chromatography on an analytical column (Waters ACQUITY 
UPLC BEH amide 2.1 × 100 mm2, 1.7 µm) maintained at 25 °C and a flow 
rate of 0.6 ml min–1. The starting conditions were 15% buffer A (1:1 ace-
tonitrile/water, 10 mM ammonium formate, 0.176% formic acid) and 
85% buffer B (95:5:5 acetonitrile/methanol/water, 10 mM ammonium 
formate and 0.176% formic acid). Starting conditions were maintained 
for three min followed by ramping to 5% buffer B over seven min, which 
was maintained for one min before returning to starting conditions. 
Total run time was 12.7 min. Source parameters were set as follows: gas 
temperature 325 °C, gas flow 10 l min–1, nebulizer 40 psi, sheath gas 

temperature 350 °C, sheath gas flow 11 l min–1, capillary voltage 3,500 V, 
nozzle voltage 1,000 V. Lysine was measured in positive mode by moni-
toring transitions 147–84 for unlabelled lysine and 153–89 for labelled 
lysine (fragmentor 80 and collission energy (CE) 10 for both). Data 
were analysed in MassHunter (Agilent). Correct peaks were identified 
by matching retention times to pure analytical amino acid standards, 
as well as a qualifier transition at 147.1–130.1 (fragmentor 80, CE 5). 
Labelled and unlabelled lysine were quantified by peak integration, 
both being reported as a fraction of total area (labelled + unlabelled).

Proteomics sample preparation
For cells grown on agar media, colonies were washed off the surface 
with one ml of water, transferred to a 96-deep-well plate, pelleted by 
centrifugation (3,200g, four min) and frozen at −80 °C until further 
processing. For liquid cultures, roughly 1 OD-unit of cells were trans-
ferred to a 96-deep-well plate, separated from medium by centrifuga-
tion, resuspended in one ml of water, pelleted by centrifugation and 
frozen at −80 °C until further processing.

Samples were prepared by mechanical lysis in denaturing urea 
buffer, followed by reduction-alkylation of cysteine residues, diges-
tion, solid phase extraction (SPE) and buffer exchange, as described 
previously74,75. In brief, 200 µl of lysis buffer (seven M urea and 0.1 M 
ammonium bicarbonate in water) and a small amount of acid-washed 
glass beads (425–600 µm in size) were added to each well and the plate 
sealed with a rubber seal mat. Cells were then lysed mechanically for 
2 × 5 min using a 1600 MiniG bead mill (Spex Sample Prep) operated 
at 1,500 rpm. Then, 20 µl of 55 mM dithiothreitol was added with incu-
bation at 30 °C for one h, followed by the addition of 20 µl of 120 mM 
iodoacetamide and a further 30 min incubation at room temperature 
in the dark. Next, one ml of 0.1 M ammonium bicarbonate was added to 
each well and the extract cleared by centrifugation (3,220g, five min). 
This was followed by transfer of 230–920 µl (varying between experi-
ments, depending on the starting amount of biological material) to a 
fresh plate containing either 10–20 µl of trypsin solution (100 µg ml–1; 
Sequencing Grade Modified Trypsin, Bulk Sale Size, Promega, prepared 
according to the manufacturer’s instructions) or 10–20 µl of gluC 
solution (100 µg ml–1; New England Biolabs, prepared according to the 
manufacturer’s instructions). Proteins were digested at 37 °C overnight. 
Formic acid (prepared as a 10% stock) was added to a final concentration 
of 1% and peptides purified by SPE using 96-well SPE plates (BioPure 
Macro 96, PROTO 300 C18, no. HNS S18V-L, Nest Group). These were 
first conditioned with methanol, followed by 2× buffer B (50% acetoni-
trile in water) and 3× buffer A (3% acetonitrile in water with 0.1% formic 
acid). Samples were then loaded and washed three times with buffer A 
before elution into a fresh plate; 200 µl was used for all conditioning 
and wash steps, and elution was done using 2× 120 µl followed by 130 µl 
of buffer B. Samples were then dried at 45 °C in a Concentrator Plus 
(Eppendorf) using the V-AQ programme. Samples were reconstituted 
in 20–50 µl of buffer A, cleared of any insoluble components (3,200g, 
five min) and transferred to a fresh plate compatible with our autosa-
mpler. Peptide concentrations were estimated using absorption at 
280 nm (Lunatic plate reader, Unchained Labs).

Microflow LC–MS setup and measurements
Sample volumes containing two µg of peptides were analysed on a 
nanoAcquity UPLC (Waters) connected to a SCIEX TripleTOF 6600 
with a DuoSpray Turbo V source, as described previously75. The column 
(Waters HSS T3, 150 mm × 300 µm, 1.8 µm particles) was maintained 
at 35 °C and a flow rate of five µl min–1. The chromatographic gradient 
was 20 min, starting with 3% buffer B and 97% buffer A and ending at 
80% buffer B before returning to starting conditions (total run time, 
27.5 min). Ion source gas 1 (nebulizer gas), ion source gas 2 (heater gas) 
and curtain gas were set to 15, 20 and 25, respectively. The ion spray 
voltage was set to 5,500 V and source temperature to 75 °C. The mass 
spectrometer was operated in high-resolution mode.
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For DIA–sequential windowed acquisition of all theoretical 
fragment (DIA–SWATH) analysis (Supplementary Datasets 4 and 5)  
a SWATH method with 40 windows and 35 ms accumulation time 
was used, covering a precursor range of 400–1,250 m/z75. Data were 
analysed in DIA–NN v.1.8 (ref. 32) using a spectral library generated 
by gas phase fractionation and scanning SWATH analysis74 with 
long gradients on the same physical setup75. The library contained 
4,936 protein groups and 58,599 precursors. Sciex wiff data files 
were loaded directly into DIA–NN. MS2 and MS1 mass accuracy was 
set to 20 and 12, respectively. ‘Use isotopologues’ and ‘Remove likely 
interferences’ were enabled, with ‘Robust LC (high precision)’ set for 
quantification strategy. Reverse-transcription-dependent cross-run 
normalization was enabled, and gene quantities as reported by 
DIA–NN (which internally uses maxLFQ76) were used for differential 
expression analysis.

For targeted measurements (PRM) (Supplementary Dataset 2), 
suitable peptides were selected based on their amino acid composition 
(exactly two lysine residues and no cysteine or methionine residues), 
the position of the lysine residues in the peptide (ideally one lysine 
close to the C terminus and both lysines far apart from each other), 
their typical abundance, as well as other quality indicators (consistency 
of identification across runs, no probable interferences reported and 
consistency of retention time across runs). Only proteotypic peptides 
were used. PRM methods were generated using Skyline77. Generally, all 
amino acids except lysine were set to carry structural modifications to 
reflect their 12C-to-13C mass shift, and isotope label modification with 
matching retention time was applied to lysine. Isotope labels were 
then permuted fully, resulting in four uniquely labelled precursors 
per peptide of interest. Collision energies and declustering potentials 
were predicted using the SCIEX setting. For Supplementary Dataset 2,  
samples were run on the setup described above with identical chro-
matography and source parameters. For data underlying Extended 
Data Fig. 1, samples were run on high-flow chromatography (Agilent 
1290 Infinity II) with a five min gradient on a Infinitylab Poroshell 120 
EC-C18 column (2.1 × 50 mm2, 1.9 µm) coupled to a SCIEX TripleTOF 
6600 with IonDrive source.

Data files were directly loaded into Skyline v.21.1 or v.21.2. Skyline 
was instructed to extract data for single-charged y and b fragment 
ions, starting with ion3 and ending with last ion-2, as well as for intact 
precursors. Resolving powers were set to 20,000 for MS1 and 12,000 
for MS2, with high-selectivity extraction enabled. Identification and 
integration were checked manually and quantification reports gener-
ated for further analysis in python. For fragment-level quantification, 
only fragments containing exactly one lysine were used. This allowed 
us to resolve and quantify the two mixed-labelling states (which have 
the exact same precursor mass), because fragments with one lysine 
are unique to either one of the two. Only the top three abundant 
fragments (average rank across all samples) were used for quantifi-
cation. For each fragment the ratios of the different labelling states 
were determined first before averaging across fragments, peptides 
and replicates.

Observed and expected labelling state abundance
Lysine incorporation into peptides was modelled as a Bernoulli process 
with two trials (one per lysine residue). Probability was derived from 
the abundances of the three labelling states by computing the average 
occurrence of imported lysine across the two sites (P = (0 x producer 
peptide abundance + 1 x mixed peptide abundance + 2 x consumer 
peptide abundance)/2). The expected relative abundance, r, of label-
ling states was then computed as

r = (
2

k
)Pk(1 − P)2−k

where k is the number of imported lysine residues in the peptide.

Nanoflow LC–MS setup for DIA-PASEF measurements
For proteome-wide determination of producer and consumer gene 
expression differences (Supplementary Dataset 3), tryptic digests 
were prepared from colonies and liquid cultures as described above. 
Peptides (400 ng) were analysed on a nano-flow chromatography setup 
(UltiMate 3000, Thermo Scientific Dionex) coupled to a TIMS quadru-
pole time-of-flight instrument (timsTOF Pro2, Bruker Daltonics). We 
used a 25 cm Aurora Series analytical column with emitter column (CSI, 
25 cm × 75 µm ID, 1.6 µm C18, IonOpticks) maintained at 50 °C. Mobile 
phases A and B (water with 0.1% formic acid and acetonitrile with 0.1% 
formic acid, respectively) were applied on a linear gradient starting 
from 2% B and increasing to 17% by minute 87, followed by an increase 
to 25% B to minute 93, 37% B to minute 98 and 80% B to minute 99, which 
was maintained until minute 104. The column was then equilibrated 
in 2% B for the next 15 min. For calibration of the ion mobility dimen-
sion, three of the Agilent ESI-Low Tuning Mix ions were selected (m/z 
(Thomson (Th)), 1/K0 (Vs cm-2): 622.0289, 0.9848; 922.0097, 1.1895; 
1221.9906, 1.3820). Data were acquired in DIA–PASEF mode. In the 
m/z dimension, windows ranged from 400 to 1,200 Th and in the 1/K0 
dimension from 0.6 to 1.4 Vs cm−2, with 32 × 25 Th windows. Collision 
energy was decreased linearly, from 59 eV at 1/K0 = 1.3 Vs cm−2 to 20 eV 
at 1/K0 = 0.85 Vs cm−2.

For the spike-in experiment shown in Extended Data Fig. 4e–g, 
500 ng of total peptides (pooled sample from the experiment shown 
in Fig. 3 and Supplementary Dataset 3 plus fully labelled 13C peptides) 
was analysed using Evosep chromatography (EVOTIP PERFORMANCE, 
set up according to the manufacturer’s protocol), with the EVOSEP 15 
SPD LC method (88 min gradient) and the EV1137 PERFORMANCE col-
umn (15 cm × 150 µm, 1.5 µm at 40 °C), coupled to a 10 µm Zero Dead 
Volume Captive Spray Emitter (Bruker, no. 1865691). The same mass 
spectrometer and acquisition method were used.

Data were analysed using the recently developed tims module in 
DIA–NN 1.8 (ref. 34). In a first step, the spectral library described above 
was modified in silico to reflect the 13C-labelling state of colonies grown 
on 13C glucose with 12C lysine. For this, fixed modifications of the type 
‘label’ (indicating that they do not affect retention time) were applied 
to all amino acids except for lysine, where the same was applied as 
a variable modification. Only precursors with charge +2 or +3 and 
of length 7–30 residues were included in the modified library. The 
‘ExcludeFromAssay’ column of the library was then set to True for all 
b-series ions and False for all y-series ions, indicating that only y-series 
ions (containing exactly one lysine) should be used for quantification, 
thereby excluding fragments not unique to one of the labelling states 
of the precursors. Raw data files were then directly loaded into DIA–NN 
and analysed with the previously generated library. MS1 and MS2 mass 
accuracies were set to 10, ‘Use isotopologues’ was disabled, ‘Remove 
likely interferences’ was enabled and ‘Robust LC (high precision)’ was 
set for Quantification Strategy; ‘–restrict-fr’ was added to the option 
field to enable the use of the ‘ExcludeFromAssay’ column of the library. 
Default options were used otherwise.

The DIA–NN output reports were further processed in python. 
Only proteotypic peptides with exactly one lysine residue located at 
the end of the peptide and with Quantity.Quality >0.7 were included 
in the analysis. For the experiment investigating colony subpopula-
tions, two out of eight samples were excluded from the analysis (one 
had a low number of IDs and one a median ratio of labelled/unlabelled 
peptides that differed substantially from the other seven). Matching 
labelled/unlabelled precursor pairs were identified based on Data.File, 
Stripped.Sequence and Precursor.Charge, and the ratio of the Precur-
sor.Quantity of heavy (producer) to light (consumer) was computed. 
For each sample separately, heavy/light rations were divided by the 
sample median and log2 transformed. It was then tested whether the 
mean ratio across replicates was significantly different from 0, using 
the 'ttest_1samp' function from scipy.stats78. P values were corrected 
for multiple testing using the method of Benjamini and Hochberg. 
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Precursors were considered significant if the adjusted P value was 
<0.05. Median heavy light ratio, as well as other summary statistics, 
were generated. Precursor-level results were then aggregated at the 
gene level, considering only precursors identified in at least three 
samples. A gene was considered a hit if at least one precursor was sig-
nificant, if the absolute average log2-transformed median FC across all 
precursors was >0.75 and if all precursors showed the same trend (all 
median log2(FC) have the same sign).

Gene enrichment analyses were performed with gProfiler79, 
accessed via python API (gprofiler-official v.1.0.0). Gene Ontology 
enrichments were visualized with the CellPlot package (S. E. Templer 
and R. Sehlke). Yeast pathways were downloaded manually from path-
way.yeastgenome.org (accessed 8 August 2021). Genes annotated to 
specific Gene Ontolgy terms (oxidative phosphorylation: GO:0006119; 
cytoplasmic translation: GO:0002181) were retrieved with gProfiler 
on 9 August 2021. The pathway map was drawn with iPATH80. For this, 
Saccharomyces Genome Database gene names were first converted to 
UNIPROTSWISSPROT IDs using gProfiler. Edges were coloured accord-
ing to the direction of change and drawn with a thickness reflecting 
log2-transformed FC (width, 1 + log2(FC) × 10).

Quantitative changes in gene expression between postdiauxic 
growth compared with early exponential growth (Figs. 3f and 4b) were 
obtained from Supplementary Data 1 of (ref. 38). This dataset contains 
10-plex tandem mass tag measurements of yeast strain DBY7286 (MATa, 
ura3, GAL2) at ten time points during growth on liquid yeast extract 
peptone dextrose medium. We used protein-level mean values from 
the sheet ‘timecourse statistics’ and divided the 33 h timepoint (time-
point 10, late postdiauxic growth and entry into stationary phase) by 
the 11 h time point (time point 3, early exponential growth), followed 
by log2 transformation.

FACS of amphotericin-treated cells
Heterogeneous and 13C-labelled colonies were grown on SM medium 
with 1% 13C glucose and 200 µM lysine for three days. Colonies were 
then resuspended in 1.1 ml of SM with 0.2% 13C glucose, and 500 µl 
was added to a similar volume of amphotericin B solution followed by 
mixing and incubation for one h as described above. Cells were col-
lected by centrifugation and resuspended in PBS. Before FACS, cells 
were sonicated for 20 s at 50 W ( JSP Ultrasonic Cleaner model US21) 
to increase singlet efficiency. Cells were then stained with 8 µg ml–1 
propidium iodine to identify live and dead cells, before FACS analysis. 
Live and dead cells were sorted on a BD Aria Fusion with BD FACSDiva 
(v.8.0.1) software (BD Biosciences) using a 488 nm excitation laser. The 
gating strategy is illustrated in Extended Data Fig. 7a. Sorted cells were 
collected by filtration through a 0.45 µm polyvinylidene difluoride 
membrane (Agilent, no. 200959–100) and washed from the filter with 
200 µl of proteomics lysis buffer, followed by sample processing and 
targeted PRM measurement as described above.

Assessment of amphotericin B resistance by flow cytometry
To assess the effect of lysine on amphotericin resistance in colonies, 
colonies were grown for two days with or without 400 µM lysine in SM 
medium with 1% standard (12C) glucose. Colonies were resuspended in 
one ml of SM with 0.2% 12C glucose and OD600 was determined. To assess 
differential resistance in the top and bottom cell layers in colonies, 
non-supplemented colonies were grown in SM medium with 1% 12C 
glucose for three days. Top cells were scraped off as described above 
and resuspended in 550 µl of SM with 0.2% 12C glucose, and bottom 
cells were washed from the agar with the same volume. The next step 
in both experiments was the addition of 200 µl of cell suspension to 
200 µl of amphotericin B solution, followed by shaking at 1,000 rpm 
for five min and incubation at room temperature in the dark. Cell death 
was assessed using the LIVE/DEAD Fixable Far Red Dead Cell Stain Kit 
for 633 or 635 nm excitation (ThermoFisher Scientific, no. L10120) 
according to the manufacturer’s instructions. Cells were then sonicated 

for 20 s at 50 W ( JSP Ultrasonic Cleaner model US21) to increase singlet 
efficiency, and 250 µl was transferred to a 96-well plate for analysis. A 
total of 20,000–30,000 cells per sample were measured in a Fortessa 
X20 Flow cytometer (BD Biosciences) using the HTS plate mode on 
BD Diva software, v.8.0.1 and a 633 nm excitation laser, to capture dye 
fluorescence intensity. Populations of interest were gated using FlowJo 
v.10.3.0, as illustrated in Extended Data Figs. 8 and 9.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Nine Extended Data figures and one Extended Data table are provided 
with this manuscript. Seven Supplementary datasets are supplied in 
xlsx format. For DIA experiments: raw data, DIA–NN pipelines, log 
and report files, as well as code used for analysis, have been depos-
ited at ProteomeXchange81 via PRIDE82, with the following accessions: 
PXD037508 (Supplementary Dataset 3 and spike experiment shown 
in Extended Data Fig. 4e–g); PXD030702 (Supplementary Dataset 4);  
PXD033395 (Supplementary Dataset 5). For targeted proteomics exper-
iments, Skyline files, raw data and Jupyter notebooks containing code 
used for analysis and plotting have been deposited with Panorama 
Public83 and ProteomeXchange: https://panoramaweb.org/DILAC.url 
(10.6069/s9b3-zz35) and PXD036959.

References
1. Saint, M. et al. Single-cell imaging and RNA sequencing  

reveal patterns of gene expression heterogeneity during  
fission yeast growth and adaptation. Nat. Microbiol. 4,  
480–491 (2019).

2. Nadal-Ribelles, M. et al. Sensitive high-throughput single-cell 
RNA-seq reveals within-clonal transcript correlations in yeast 
populations. Nat. Microbiol. 4, 683–692 (2019).

3. Jackson, C. A., Castro, D. M., Saldi, G.-A., Bonneau, R. & Gresham, 
D. Gene regulatory network reconstruction using single-cell RNA 
sequencing of barcoded genotypes in diverse environments. 
eLife 9, e51254 (2020).

4. Jariani, A. et al. A new protocol for single-cell RNA-seq reveals 
stochastic gene expression during lag phase in budding yeast. 
eLife 9, e55320 (2020).

5. Rugbjerg, P. & Olsson, L. The future of self-selecting and  
stable fermentations. J. Ind. Microbiol. Biotechnol. 47,  
993–1004 (2020).

6. González-Cabaleiro, R., Mitchell, A. M., Smith, W., Wipat, 
A. & Ofiţeru, I. D. Heterogeneity in pure microbial systems: 
experimental measurements and modeling. Front. Microbiol. 8, 
1813 (2017).

7. Campbell, K., Vowinckel, J. & Ralser, M. Cell-to-cell heterogeneity 
emerges as consequence of metabolic cooperation in a synthetic 
yeast community. Biotechnol. J. 11, 1169–1178 (2016).

8. Morawska, L. P., Hernandez-Valdes, J. A. & Kuipers, O. P. Diversity 
of bet-hedging strategies in microbial communities–recent cases 
and insights. WIREs Mech. Dis. 14, e1544 (2022).

9. Rosenberg, A. et al. Antifungal tolerance is a subpopulation 
effect distinct from resistance and is associated with persistent 
candidemia. Nat. Commun. 9, 2470 (2018).

10. Dewachter, L., Fauvart, M. & Michiels, J. Bacterial heterogeneity 
and antibiotic survival: understanding and combatting 
persistence and heteroresistance. Mol. Cell 76, 255–267 (2019).

11. Bódi, Z. et al. Phenotypic heterogeneity promotes adaptive 
evolution. PLoS Biol. 15, e2000644 (2017).

12. Levy, S. F., Ziv, N. & Siegal, M. L. Bet hedging in yeast by 
heterogeneous, age-correlated expression of a stress protectant. 
PLoS Biol. 10, e1001325 (2012).

http://www.nature.com/naturemicrobiology
http://amigo.geneontology.org/amigo/term/GO:0006119
http://amigo.geneontology.org/amigo/term/GO:0002181
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD037508
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD030702
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD033395
https://panoramaweb.org/DILAC.url
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD036959


Nature Microbiology

Article https://doi.org/10.1038/s41564-022-01304-8

13. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. 
Bacterial persistence as a phenotypic switch. Science 305, 
1622–1625 (2004).

14. Li, S., Giardina, D. M. & Siegal, M. L. Control of nongenetic 
heterogeneity in growth rate and stress tolerance of 
Saccharomyces cerevisiae by cyclic AMP-regulated transcription 
factors. PLoS Genet. 14, e1007744 (2018).

15. Lukačišin, M., Espinosa-Cantú, A. & Bollenbach, T. 
Intron-mediated induction of phenotypic heterogeneity. Nature 
605, 113–118 (2022).

16. Avery, S. V. Microbial cell individuality and the underlying sources 
of heterogeneity. Nat. Rev. Microbiol. 4, 577–587 (2006).

17. Holland, S. L., Reader, T., Dyer, P. S. & Avery, S. V. Phenotypic 
heterogeneity is a selected trait in natural yeast populations 
subject to environmental stress. Environ. Microbiol. 16,  
1729–1740 (2014).

18. Olin-Sandoval, V. et al. Lysine harvesting is an antioxidant strategy 
and triggers underground polyamine metabolism. Nature 572, 
249–253 (2019).

19. Alam, M. T. et al. The metabolic background is a global player  
in Saccharomyces gene expression epistasis. Nat. Microbiol 1, 
15030 (2016).

20. Yin, H., He, Y., Dong, J. & Lu, J. Transcriptional profiling  
of amino acid supplementation and impact on aroma  
production in a lager yeast fermentation. J. Inst. Brew. 124, 
425–433 (2018).

21. Boer, V. M. et al. Transcriptional responses of Saccharomyces 
cerevisiae to preferred and nonpreferred nitrogen sources in 
glucose-limited chemostat cultures. FEMS Yeast Res. 7, 604–620 
(2007).

22. Godard, P. et al. Effect of 21 different nitrogen sources on global 
gene expression in the yeast Saccharomyces cerevisiae. Mol. Cell. 
Biol. 27, 3065–3086 (2007).

23. Costa, C. et al. New mechanisms of flucytosine resistance in C. 
glabrata unveiled by a chemogenomics analysis in S. cerevisiae. 
PLoS ONE 10, e0135110 (2015).

24. Yu, J. S. L. et al. Microbial communities form rich extracellular 
metabolomes that foster metabolic interactions and promote 
drug tolerance. Nat. Microbiol. https://doi.org/10.1038/s41564-
022-01072-5 (2022).

25. Campbell, K. et al. Self-establishing communities enable 
cooperative metabolite exchange in a eukaryote. eLife 4,  
e09943 (2015).

26. Momeni, B., Brileya, K. A., Fields, M. W. & Shou, W. Strong 
inter-population cooperation leads to partner intermixing in 
microbial communities. eLife 2, e00230 (2013).

27. Takhaveev, V. & Heinemann, M. Metabolic heterogeneity  
in clonal microbial populations. Curr. Opin. Microbiol. 45,  
30–38 (2018).

28. Fröhlich, F., Christiano, R. & Walther, T. C. Native SILAC: metabolic 
labeling of proteins in prototroph microorganisms based on 
lysine synthesis regulation. Mol. Cell. Proteomics 12, 1995–2005 
(2013).

29. Dannenmaier, S. et al. Complete native stable isotope labeling by 
amino acids of Saccharomyces cerevisiae for global proteomic 
analysis. Anal. Chem. 90, 10501–10509 (2018).

30. Hammer, T., Bode, R., Schmidt, H. & Birnbaum, D. Distribution 
of three lysine-catabolizing enzymes in various yeast species. J. 
Basic Microbiol. 31, 43–49 (1991).

31. Mülleder, M. et al. Functional metabolomics describes the yeast 
biosynthetic regulome. Cell 167, 553–565 (2016).

32. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, 
M. DIA-NN: neural networks and interference correction enable 
deep proteome coverage in high throughput. Nat. Methods 17, 
41–44 (2020).

33. Vowinckel, J. et al. Cost-effective generation of precise  
label-free quantitative proteomes in high-throughput by  
microLC and data-independent acquisition. Sci. Rep. 8,  
4346 (2018).

34. Demichev, V. et al. dia-PASEF data analysis using FragPipe  
and DIA-NN for deep proteomics of low sample amounts.  
Nat. Commun. 13, 3944 (2022).

35. Meier, F. et al. diaPASEF: parallel accumulation-serial 
fragmentation combined with data-independent acquisition.  
Nat. Methods 17, 1229–1236 (2020).

36. Feller, A., Dubois, E., Ramos, F. & Piérard, A. Repression of the 
genes for lysine biosynthesis in Saccharomyces cerevisiae 
is caused by limitation of Lys14-dependent transcriptional 
activation. Mol. Cell. Biol. 14, 6411–6418 (1994).

37. Kamrad, S. et al. Pyruvate kinase variant of fission yeast tunes 
carbon metabolism, cell regulation, growth and stress resistance. 
Mol. Syst. Biol. 16, e9270 (2020).

38. Murphy, J. P., Stepanova, E., Everley, R. A., Paulo, J. A. & Gygi, S. 
P. Comprehensive temporal protein dynamics during the diauxic 
shift in Saccharomyces cerevisiae. Mol. Cell. Proteomics 14, 
2454–2465 (2015).

39. Brauer, M. J., Saldanha, A. J., Dolinski, K. & Botstein, D. 
Homeostatic adjustment and metabolic remodeling in 
glucose-limited yeast cultures. Mol. Biol. Cell 16, 2503–2517 
(2005).

40. Björkeroth, J. et al. Proteome reallocation from amino acid 
biosynthesis to ribosomes enables yeast to grow faster in rich 
media. Proc. Natl Acad. Sci. USA 117, 21804–21812 (2020).

41. Hiesinger, M., Wagner, C. & Schüller, H. J. The acetyl-CoA 
synthetase gene ACS2 of the yeast Saccharomyces cerevisiae is 
coregulated with structural genes of fatty acid biosynthesis by 
the transcriptional activators Ino2p and Ino4p. FEBS Lett. 415, 
16–20 (1997).

42. Kornberg, H. L. The role and control of the glyoxylate cycle in 
Escherichia coli. Biochem. J. 99, 1–11 (1966).

43. Duntze, W., Neumann, D., Gancedo, J. M., Atzpodien, W. & Holzer, 
H. Studies on the regulation and localization of the glyoxylate 
cycle enzymes in Saccharomyces cerevisiae. Eur. J. Biochem. 10, 
83–89 (1969).

44. Xiao, T., Khan, A., Shen, Y., Chen, L. & Rabinowitz, J. D. Glucose 
feeds the tricarboxylic acid cycle via excreted ethanol in 
fermenting yeast. Nat. Chem. Biol. https://doi.org/10.1038/s41589-
022-01091-7 (2022).

45. Cole, J. A., Kohler, L., Hedhli, J. & Luthey-Schulten, Z. 
Spatially-resolved metabolic cooperativity within dense bacterial 
colonies. BMC Syst. Biol. 9, 15 (2015).

46. Wolfsberg, E., Long, C. P. & Antoniewicz, M. R. Metabolism in 
dense microbial colonies: C metabolic flux analysis of E. coli 
grown on agar identifies two distinct cell populations with acetate 
cross-feeding. Metab. Eng. 49, 242–247 (2018).

47. Dal Co, A., van Vliet, S. & Ackermann, M. Emergent microscale 
gradients give rise to metabolic cross-feeding and antibiotic 
tolerance in clonal bacterial populations. Philos. Trans. R. Soc. 
Lond. B Biol. Sci. 374, 20190080 (2019).

48. Plocek, V., Váchová, L., Šťovíček, V. & Palková, Z. Cell distribution 
within yeast colonies and colony biofilms: how structure 
develops. Int. J. Mol. Sci. 21, 3873 (2020).

49. Yuan, D. S. Zinc-regulated genes in Saccharomyces cerevisiae 
revealed by transposon tagging. Genetics 156, 45–58 (2000).

50. Ghosh, A. et al. A peptide-based method for 13C metabolic 
flux analysis in microbial communities. PLoS Comput. Biol. 10, 
e1003827 (2014).

51. Kleiner, M. Metaproteomics: much more than measuring  
gene expression in microbial communities. mSystems 4, 
e00115–19 (2019).

http://www.nature.com/naturemicrobiology
https://doi.org/10.1038/s41564-022-01072-5
https://doi.org/10.1038/s41564-022-01072-5
https://doi.org/10.1038/s41589-022-01091-7
https://doi.org/10.1038/s41589-022-01091-7


Nature Microbiology

Article https://doi.org/10.1038/s41564-022-01304-8

52. Jehmlich, N., Vogt, C., Lünsmann, V., Richnow, H. H. & von Bergen, 
M. Protein-SIP in environmental studies. Curr. Opin. Biotechnol. 
41, 26–33 (2016).

53. Taubert, M. SIP-metaproteomics: linking microbial taxonomy, 
function, and activity. Methods Mol. Biol. 2046, 57–69 (2019).

54. DeGennaro, C. M., Savir, Y. & Springer, M. Identifying metabolic 
subpopulations from population level mass spectrometry. PLoS 
ONE 11, e0151659 (2016).

55. Sachsenberg, T. et al. MetaProSIP: automated inference of 
stable isotope incorporation rates in proteins for functional 
metaproteomics. J. Proteome Res. 14, 619–627 (2015).

56. Zeng, X. et al. Gut bacterial nutrient preferences quantified 
in vivo. Cell 185, 3441–3456 (2022).

57. Urban, P. L. et al. Carbon-13 labelling strategy for studying the 
ATP metabolism in individual yeast cells by micro-arrays for mass 
spectrometry. Mol. Biosyst. 7, 2837–2840 (2011).

58. Cooper, A. L., Dean, A. C. & Hinshelwood, C. Factors affecting the 
growth of bacterial colonies on agar plates. Proc. R. Soc. Lond. B 
Biol. Sci. 171, 175–199 (1968).

59. Pirt, S. J. A kinetic study of the mode of growth of surface colonies 
of bacteria and fungi. J. Gen. Microbiol. 47, 181–197 (1967).

60. Vulin, C. et al. Growing yeast into cylindrical colonies. Biophys. J. 
106, 2214–2221 (2014).

61. Pipe, L. Z. & Grimson, M. J. Spatial-temporal modelling of 
bacterial colony growth on solid media. Mol. Biosyst. 4,  
192–198 (2008).

62. Díaz-Pascual, F. et al. Spatial alanine metabolism determines local 
growth dynamics of colonies. eLife 10, e70794 (2021).

63. Mülleder, M. et al. A prototrophic deletion mutant collection for 
yeast metabolomics and systems biology. Nat. Biotechnol. 30, 
1176–1178 (2012).

64. Opalek, M. & Wloch-Salamon, D. Aspects of multicellularity in 
yeast: a review of evolutionary and physiological mechanisms. 
Genes (BASEL) 11, 690 (2020).

65. Cáp, M., Stěpánek, L., Harant, K., Váchová, L. & Palková, Z. Cell 
differentiation within a yeast colony: metabolic and regulatory 
parallels with a tumor-affected organism. Mol. Cell 46, 436–448 
(2012).

66. Palková, Z. & Váchová, L. Spatially structured yeast communities: 
understanding structure formation and regulation with omics 
tools. Comput. Struct. Biotechnol. J. 19, 5613–5621 (2021).

67. Wilkinson, D. et al. Transcriptome remodeling of differentiated 
cells during chronological ageing of yeast colonies: new insights 
into metabolic differentiation. Oxid. Med. Cell. Longev. 2018, 
4932905 (2018).

68. Traven, A. et al. Transcriptional profiling of a yeast colony 
provides new insight into the heterogeneity of multicellular 
fungal communities. PLoS ONE 7, e46243 (2012).

69. Varahan, S., Walvekar, A., Sinha, V., Krishna, S. & Laxman, S. 
Metabolic constraints drive self-organization of specialized cell 
groups. eLife 8, e46735 (2019).

70. Varahan, S., Sinha, V., Walvekar, A., Krishna, S. & Laxman, S. 
Resource plasticity-driven carbon-nitrogen budgeting enables 
specialization and division of labor in a clonal community. eLife 9, 
e57609 (2020).

71. Smukalla, S. et al. FLO1 is a variable green beard gene that drives 
biofilm-like cooperation in budding yeast. Cell 135, 726–737 (2008).

72. Bojsen, R., Regenberg, B. & Folkesson, A. Saccharomyces 
cerevisiae biofilm tolerance towards systemic antifungals 
depends on growth phase. BMC Microbiol. 14, 305 (2014).

73. Mülleder, M., Bluemlein, K. & Ralser, M. A high-throughput 
method for the quantitative determination of free amino acids 
in by hydrophilic interaction chromatography-tandem mass 
spectrometry. Cold Spring Harb. Protoc. 2017, db.prot089094 
(2017).

74. Messner, C. B. et al. Ultra-fast proteomics with Scanning SWATH. 
Nat. Biotechnol. 39, 846–854 (2021).

75. Messner, C. B. et al. The proteomic landscape of genome-wide 
genetic perturbations. Preprint at bioRxiv https://doi.org/10.1101/ 
2022.05.17.492318 (2022).

76. Cox, J. et al. Accurate proteome-wide label-free quantification 
by delayed normalization and maximal peptide ratio extraction, 
termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).

77. MacLean, B. et al. Skyline: an open source document editor 
for creating and analyzing targeted proteomics experiments. 
Bioinformatics 26, 966–968 (2010).

78. Virtanen, P. et al. SciPy 1.0: fundamental algorithms  
for scientific computing in Python. Nat. Methods 17,  
261–272 (2020).

79. Raudvere, U. et al. g:Profiler: a web server for functional 
enrichment analysis and conversions of gene lists (2019 update). 
Nucleic Acids Res. 47, W191–W198 (2019).

80. Darzi, Y., Letunic, I., Bork, P. & Yamada, T. iPath3.0: interactive 
pathways explorer v3. Nucleic Acids Res. 46, W510–W513 (2018).

81. Deutsch, E. W. et al. The ProteomeXchange consortium in 2020: 
enabling “big data” approaches in proteomics. Nucleic Acids Res. 
48, D1145–D1152 (2020).

82. Perez-Riverol, Y. et al. The PRIDE database and related tools and 
resources in 2019: improving support for quantification data. 
Nucleic Acids Res. 47, D442–D450 (2019).

83. Sharma, V. et al. Panorama Public: a public repository for 
quantitative data sets processed in Skyline. Mol. Cell. Proteomics 
17, 1239–1244 (2018).

Acknowledgements
We thank C. Messner, M. White, F. Amari and S. Vernardis for help 
and advice with LC–MS measurements; S. Townsend and J. Hartl 
for helpful discussions; B. Heineike for many helpful discussions 
and critical reading of the manuscript and the Metabolomics 
STP at the Francis Crick Institute for producing preliminary 
data. The Francis Crick Institute receives its core funding from 
Cancer Research UK (no. FC001134), the UK Medical Research 
Council (no. FC001134) and the Wellcome Trust (no. FC001134). 
This work was supported by the Berlin University Alliance (no. 
501_Massenspektrometrie, 501_Linklab, to M.R.) and the German 
Research Foundation (no. INST 335/797-1, to M.M., V.D. and M.R.). 
This work was further supported by the Ministry of Education 
and Research as part of the National Research Node ‘Mass 
Spectrometry in Systems Medicine’, under grant agreement nos. 
161L0221 (to V.D.) and 031L0220 (to M.R.), and by the European 
Commission as part of CoBioTech project SyCoLim, funded by 
BMBF (no. 161B0931, to M.R.), the European Research Council 
(ERC) under grant agreement ERC-SyG-2020 951475 (to M.R.)  
and the Wellcome Trust (IA 200829/Z/16/Z) to M.R.

Author contributions
S.K. and M.R. conceived the study and wrote the manuscript. S.K. 
designed experiments, carried out microbial cultivations, performed 
targeted proteomics and metabolomics experiments, analysed data 
and prepared figures. C.C.-M. performed flow cytometry and FACS 
experiments and analysed data. L.S. performed DIA proteomics 
measurements. S.K.A. and V.D. contributed to data analysis. M.R., M.M. 
and J.B. supervised the study. All authors contributed to writing and 
editing of the manuscript.

Funding
Open access funding provided by Max Planck Society.

Competing interests
The authors declare no competing interests.

http://www.nature.com/naturemicrobiology
https://doi.org/10.1101/2022.05.17.492318
https://doi.org/10.1101/2022.05.17.492318


Nature Microbiology

Article https://doi.org/10.1038/s41564-022-01304-8

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41564-022-01304-8.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41564-022-01304-8.

Correspondence and requests for materials should be addressed to 
Markus Ralser.

Peer review information Nature Microbiology thanks Kevin Verstrepen, 
Jens Nielsen and Martin Pabst for their contribution to the peer review 
of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended use 
is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder. To view 
a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/naturemicrobiology
https://doi.org/10.1038/s41564-022-01304-8
https://doi.org/10.1038/s41564-022-01304-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/


Nature Microbiology

Article https://doi.org/10.1038/s41564-022-01304-8

Extended Data Fig. 1 | Producer/consumer dynamics in liquid batch cultures. 
Targeted measurements of labelling states in peptides (Methods, introduced 
later in the main text) were applied to liquid batch cultures grown in SM media 
with 1% ¹³C glucose and 68 µM unlabelled lysine. Bar heights indicate the average 
relative abundance of peptides originating from lysine producer and consumer 
cells. The data shown are the average across the top three fragments for three 
measured peptides and four biological replicates. Error bars indicate standard 
deviation. The relative abundances have been scaled to the OD of the culture 

at the time the sample was taken (that is the first sample was taken at an OD of 
approximately 0.6 and the final sample at approximately 2.5). The data shown 
indicate that initially almost all cells in the culture are lysine consumers. Then, 
a switch from uptake to synthesis occurs, indicated by the absolute abundance 
of consumer peptides not increasing after timepoint 1. Presumably, the lysine 
supplement has run out around the time the first sample has been taken and 
there is a net addition of only producer peptides.
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Extended Data Fig. 2 | Targeted proteomics (Dataset 2). a, Table listing 
peptides used for quantifying producer, consumer and mixed populations 
by targeted proteomics (PRM) assays. The Fragments column lists the top3 
fragments not shared by the two isobaric mixed labelling state precursors, 
which were used for quantification. The CE column indicates the collision 
energies used, as predicted by Skyline. b, Similar results are obtained with 
quantification of intact precursors as with the top3 suitable fragments. Shown 
are all individual data points from Dataset 2. The Pearson correlation between 
both quantification strategies is 0.993. Quantification at MS1 level can be useful 
when the signal is low, as was the case for FAC-sorted populations shown in  
Fig. 4. c, Similar results are obtained when peptides with missed cleavages from 
tryptic digests are used. The data shown is from an independent experiment 

otherwise similar to the one shown in Fig. 2. The data shown is the average 
of the top three fragments of three measured peptides across two biological 
replicates. Error bars show the standard deviation. d, Uncropped images of 
colonies grown in a 12-well plate (cropped version shown in Fig. 2A). Each 
day, the plate was scanned and a column of colonies was harvested (right to 
left), resulting in a pseudo timecourse. e, Targeted proteomics experiment 
investigating peptides with three lysine residues. Two biological replicate 
samples (200 µM lysine, 48 h) from the experiment shown in Fig. 2 were 
remeasured with a targeted method that included peptides with three lysine 
residues (as well as two peptides with two lysine residues, as control). MS1 
data was used for quantification. The depletion of the mixed labelling states is 
apparent also in peptides with three lysine residues.

http://www.nature.com/naturemicrobiology
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Extended Data Fig. 3 | Producer and consumer subpopulations also emerge 
with other amino acid supplements. a–c, Targeted proteomics was used to 
determine the relative abundance of labelling states in colonies supplemented 
with three different amino acids (F - phenylalanine (panel a); L - leucine (panel 
b); N - asparagine (panel c)). For each supplementation regime, a colony (n = 1 

biological replicate) was harvested on three consecutive days (T1, T2, T3) and 
proteome samples prepared by tryptic digestion. MS2-level relative abundances 
were averaged across the top3 fragments of at least four peptides. Bar heights 
indicate the mean across fragments of all peptides, errorbars indicate the 
standard deviation. All underlying data is available through Panorama Public.

http://www.nature.com/naturemicrobiology
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Extended Data Fig. 4 | Proteome-wide deconvolution of producer and 
consumer proteomes by DIA-PASEF (Dataset 3). a, Number of precursor IDs 
across samples. The progressive filters which were applied are shown in different 
colours. b, The median ratio of producer to consumer (heavy to light) peptides 
was highly consistent across biological replicates. c, After suitable quality filters 
were applied (in particular: Quantity.Quality > 0.7), log2-transformed labelling 
ratios between +2 and +3 charge states of the same peptide correlated tightly 
(Pearson r = 0.81). (D) Similarly, log2-transformed labelling ratios of different 
proteotypic, tryptic peptides from the same protein correlated tightly (Pearson 
r = 0.88). This analysis was restricted to +2 charged precursors, identified 
across all samples. In cases where more than two precursors were found for a 
protein, an arbitrary pair was selected. e, To further test the robustness of the 

analytical approach, a pooled sample was mixed with fully ¹³C-labelled peptides 
at different ratios. Identical quality filters were applied as before. The number 
of light precursors (¹²C-lysine) identified decreases with dilution and virtually 
no light peptides are wrongly identified in the fully labelled matrix. f, Detected 
abundances of light peptides (relative to abundance in undiluted sample) behave 
proportionally to the dilution factor. Error bars show median absolute deviation 
across all peptides identified in the sample. g, The original labelling ratios can 
be recovered with reasonable accuracy (the Pearson correlation coefficient is 
shown) even upon three-fold dilution into heavy matrix although at low dilutions 
there is a tendency to overestimate ratios and the observed ratios show a lower 
degree of variance (compression of ratios) compared to what is expected.

http://www.nature.com/naturemicrobiology
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Extended Data Fig. 5 | Hit calling and GO enrichment (Dataset 3 continued). 
a, Volcano plot illustrating hit calling at the peptide level (one-sample, two-sided 
t-test, corrected for multiple testing by Benjamini-Hochberg method, further 
described in Methods). b, Volcano plot illustrating hit calling at the gene level, 
as described in the main text. c, Barplot illustrating the number of measured 
precursor pairs per protein for all proteins in the dataset (blue) and only the 
proteins found to be differentially expressed (orange). The hit frequency (grey) is 
approximately constant, indicating that proteins with fewer identified peptides 

(less reliably measured) are not more likely to be a hit. d, CellPlot illustrating 
GO enrichment analysis of all genes differentially expressed in producers and 
consumers. GO enrichment was performed in gProfiler, using all measured 
proteins as the background. Only significant (padj < 0.05, using the g_SCS method 
of gProfiler) terms are shown. Recall refers to the fraction of genes annotated 
to the term and present in the background which were a hit in Dataset 2, the 
intersection is their absolute number.

http://www.nature.com/naturemicrobiology
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Extended Data Fig. 6 | Comparative analysis of producer/consumer 
proteome signatures. Shown are pairwise correlation plots (as scatter plots and 
hexbin plots to visualise strong responders and the general trend respectively) 
for different datasets collected in this study, as well as a dataset that describes 

proteome response to diauxie (calculated from data published by Murphy et al. 
2015). The Pearson correlation is indicated above each plot. All datasets consist 
of log2-transformed fold changes. The distribution and total number of data 
points is shown in histograms on the diagonal.

http://www.nature.com/naturemicrobiology
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Extended Data Fig. 7 | Targeted proteomic analysis of producer/consumer 
status of live/dead sorted populations after amphotericin B treatment. 
a, Plots illustrating gating strategy for FACS of cells originating from 
heterogeneous ¹³C-labelled colonies challenged with amphotericin B and 
stained with propidium iodide (PI). 10,000 events were recorded to check 
viability and gating of each sample, after which a minimum of 4 million cells were 
sorted per population. Singlets were gated based on FSC-A (forward scattered 

channel - area) and FSC-H (forward scattered channel - height) intensities. 
Conservative live and dead population gates were defined based on the FSC-A 
and 610 nm channels. b, Quantification of producer and consumer peptides in 
live and dead populations obtained by FAC-sorting. Each plot shows the data for 
a single peptide, quantified at the precursor level using a targeted proteomics 
(PRM) workflow. Dead cell populations consistently contain fewer peptides 
originating from producer cells.

http://www.nature.com/naturemicrobiology
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Extended Data Fig. 8 | Flow cytometric cell viability analysis of resuspended 
colonies grown with and without lysine after challenge with amphotericin 
B. 20,000 events were recorded per sample (fewer for the controls). Singlets 
were gated based on FSC-A (forward scattered channel - area) and FSC-H 
(forward scattered channel - height) intensities. The median singlet rate across 

the 24 samples was 95.8% with a minimum of 84.4%. Live and dead population 
gates were defined based on the live and dead controls using FSC-A and 670 nm 
channels. Identical gates were applied to all samples. Three samples are shown 
as examples.

http://www.nature.com/naturemicrobiology
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Extended Data Fig. 9 | Flow cytometric cell viability analysis of resuspended 
top and bottom layers of colonies challenged with amphotericin B. Thirty 
thousand events were recorded per sample (fewer for the controls). Singlets 
were gated based on FSC-A (forward scattered channel - area) and FSC-H 
(forward scattered channel - height) intensities. The median singlet rate across 

the 24 samples was 92.8% with a minimum of 90.5%. Live and dead population 
gates were defined based on the live and dead controls using FSC-A and 670 nm 
channels. Identical gates were applied to all samples. Three samples are shown  
as examples.
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Extended Data Table. 1 | Overview of mass spectrometry datasets generated in this study

http://www.nature.com/naturemicrobiology


1

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Corresponding author(s): Markus Ralser

Last updated by author(s): Dec 6, 2022

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Proteomics data acquisition - Sciex Analyst Instrument Control Software v1.7.1 for TripleTOF 6600  
Proteomics data acquisition - Bruker Instrument Control Software for timsTOF Pro2 v1.1.19 68 
Metabolomics data acquisition - Agilent MassHunter Instrument Control Software for QQQ 6470 v8.07.000 
Flow cytometry data acquisition - DIVA Instrument Control Software v8.0.1 (BD Instruments)

Data analysis Proteomics data analysis - DIA-NN v 1.8 
Metabolomics data analysis - Agilent MassHunter Quantitative Analysis for QQQ v8.07.00 
General data analysis - Python v3.7 
Flow Cytometry - FlowJo v10.3.0 
GO enrichment - gProfiler (gprofiler-official v1.0.0) 
Gene expression visualisation - iPATH v3.0 
GO enrichment visualisation - CellPlot v1.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.



2

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

9 Extended Data Figures and 1 Extended Data Table are provided with this manuscript.  
 
7 Supplementary Datasets are supplied in xlsx format. 
 
For DIA experiments: Raw data, DIA-NN pipelines, log and report files, as well as code used for analysis have been deposited to ProteomeXchange via PRIDE with the 
following accessions: 
- PXD037508 (Dataset 3 and spike experiment shown in Extended Data Fig. E-G) 
- PXD030702 (Dataset 4) 
- PXD033395 (Dataset 5) 
For targeted proteomics experiments: Skyline files, raw data and Jupyter notebooks containing code used for analysis and plotting have been deposited to 
Panorama Public and ProteomeXchange: panoramaweb.org/DILAC.url (doi:10.6069/s9b3-zz35) and PXD036959. 
 
This manuscript relied on the following public databases and datasets: 
- Quantitative changes in gene expression between post-diauxic growth compared to early exponential growth (Fig. 3E+F and Extended Data Fig. 64B) - Taken from 
Supplementary Data 1 of Murphy et al. (2015) "Comprehensive Temporal Protein Dynamics during the Diauxic Shift in Saccharomyces cerevisiae" Mol. Cell. 
Proteomics. DOI: 10.1074/mcp.M114.045849  
- Yeast reference proteome UP000002311 - obtained from uniprot.org 
- Yeast pathway database - pathway.yeastgenome.org (accessed 8.9.2021) 
- GO annotation and gene ID database - gProfiler (biit.cs.ut.ee/gprofiler, accessed 8.9.2021) 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender NA

Population characteristics NA

Recruitment NA

Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We determined required sample sizes by statistical power calculations. For differential gene expression testing (Dataset 3), with a typical CV of 
10% in proteomics experiments, 6 replicates are sufficient to detect a 2-fold difference in expression with a power of >99%, even after 
Bonferroni correction for the number of genes in the yeast proteome (approx 6000).

Data exclusions For the experiment investigating colony sub-populations (Dataset 3, Figure 3), 2 out of 8 samples were excluded from the analysis (one had a 
low number of IDs and one a median ratio of labelled to unlabelled peptides which differed substantially from the other 7). This is stated in 
the Methods section. Exclusion criteria were not pre-established  but exclusion of (this small number) of samples was done before any down-
stream analysis such as differential gene expression testing. 

Replication Statistical analyses and conclusions are supported by sufficient replicates, both within each experiment, as well as through independent 



3

nature portfolio  |  reporting sum
m

ary
M

arch 2021
Replication experiments (performed on different days). The key finding of Figure 2 (that lysine producer/consumer subpopulations exist in colonies) is 

supported by an independent experiment, as well as orthogonal data analysis approaches (shown in Supplementary Figure 2). The key 
findings of Figure 3 (diauxie-like heterogeneity) and Figure 4 (metabolic heterogeneity confers differential resistance to amphotericin B) are 
supported by independent and orthogonal experiments further exploring underlying mechanisms.

Randomization No group allocation took place.

Blinding No group allocation took place.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Flow Cytometry  
Cell death was assessed using the LIVE/DEAD™ Fixable Far Red Dead Cell Stain Kit, for 633 or 635 nm excitation 
(ThermoFisher Scientific, Cat no. L10120) according to the manufacturer’s instructions. Cells were then sonicated for 20 s at 
50W (JSP Ultrasonic Cleaner model US21) to increase singlets efficiency, and 250 μL were transferred to a 96-well plate for 
HPT-FC analysis. 
 
FACS 
Cells were collected by centrifugation and resuspended in PBS. Prior to FACS, cells were sonicated for 20 s at 50W (JSP 
Ultrasonic Cleaner model US21) to increase singlets efficiency. Cells were then stained with 8 μg/mL propidium iodine, to 
identify live and dead cells, prior to FACS.

Instrument Flow Cytometry  
Fortessa X20 Flow cytometer (BD Biosciences) 
 
FACS 
Aria Fusion (BD Biosciences) 

Software BD FACSDiva (v8.0.1) for instrument control and sorting 
FlowJo v10.3.0

Cell population abundance FOR FACS, at least 4 million cells were present in each sorted population. As sorted populations were immediately processed 
for proteomics and conservative gating was used, no post-sorting purity check was required.

Gating strategy FSC-A vs SSC-A was used to identify singlet cells. Gating for cell viability was done based on live (fresh yeast cells) and dead 
(cells incubated at 90°C for 10 minutes) as well as unstained control samples. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.


	Metabolic heterogeneity and cross-feeding within isogenic yeast populations captured by DILAC
	Results
	A proteomics method for detection of metabolic subpopulations
	Young colonies contain producer and consumer subpopulations
	Proteome-wide labelling reveals subpopulation gene expression
	Isogenic, young colonies contain fermenting and respiring cells
	Ion and vitamin gradients add to physiological diversity
	Intracolony heterogeneity alters resistance to amphotericin B

	Discussion
	Methods
	Yeast strains and media
	Physical separation of top and bottom cells in colonies
	Measurement of free intracellular amino acids
	Proteomics sample preparation
	Microflow LC–MS setup and measurements
	Observed and expected labelling state abundance
	Nanoflow LC–MS setup for DIA-PASEF measurements
	FACS of amphotericin-treated cells
	Assessment of amphotericin B resistance by flow cytometry
	Reporting summary

	Acknowledgements
	Fig. 1 A strategy for the detection and analysis of metabolic subpopulations based on stable isotope incorporation and proteomics.
	Fig. 2 Yeast colonies contain stable lysine producer and consumer subpopulations.
	Fig. 3 Differential proteome analysis of lysine producers and consumers reveals extensive diauxie-like heterogeneity in young colonies.
	Fig. 4 FACS and proteomics link producer/consumer status to an antimicrobial resistance phenotype.
	Extended Data Fig. 1 Producer/consumer dynamics in liquid batch cultures.
	Extended Data Fig. 2 Targeted proteomics (Dataset 2).
	Extended Data Fig. 3 Producer and consumer subpopulations also emerge with other amino acid supplements.
	Extended Data Fig. 4 Proteome-wide deconvolution of producer and consumer proteomes by DIA-PASEF (Dataset 3).
	Extended Data Fig. 5 Hit calling and GO enrichment (Dataset 3 continued).
	Extended Data Fig. 6 Comparative analysis of producer/consumer proteome signatures.
	Extended Data Fig. 7 Targeted proteomic analysis of producer/consumer status of live/dead sorted populations after amphotericin B treatment.
	Extended Data Fig. 8 Flow cytometric cell viability analysis of resuspended colonies grown with and without lysine after challenge with amphotericin B.
	Extended Data Fig. 9 Flow cytometric cell viability analysis of resuspended top and bottom layers of colonies challenged with amphotericin B.
	Extended Data Table. 1 Overview of mass spectrometry datasets generated in this study.




